Computational units in artificial neural networks follow a simplified model of biological neurons. In the biological model, the output signal of a neuron runs down the axon, splits following the many branches at its end, and passes identically to all the downward neurons of the network. Each of the downward neurons will use their copy of this signal as one of many inputs dendrites, integrate them all and fire an output, if above some threshold. In the artificial neural network, this translates to the fact that the nonlinear filtering of the signal is performed in the upward neuron, meaning that in practice the same activation is shared between all the downward neurons that use that signal as their input. Dendrites thus play a passive role. We propose a slightly more complex model for the biological neuron, where dendrites play an active role: the activation in the output of the upward neuron becomes optional, and instead the signals going through each dendrite undergo independent nonlinear filterings, before the linear combination. We implement this new model into a ReLU computational unit and discuss its biological plausibility. We compare this new computational unit with the standard one and describe it from a geometrical point of view. We provide a Keras implementation of this unit into fully connected and convolutional layers and estimate their FLOPs and weights change. We then use these layers in ResNet architectures on CIFAR-10, CIFAR-100, Imagenette, and Imagewoof, obtaining performance improvements over standard ResNets up to 1.73%. Finally, we prove a universal representation theorem for continuous functions on compact sets and show that this new unit has more representational power than its standard counterpart.
translated by 谷歌翻译
The text-to-image model Stable Diffusion has recently become very popular. Only weeks after its open source release, millions are experimenting with image generation. This is due to its ease of use, since all it takes is a brief description of the desired image to "prompt" the generative model. Rarely do the images generated for a new prompt immediately meet the user's expectations. Usually, an iterative refinement of the prompt ("prompt engineering") is necessary for satisfying images. As a new perspective, we recast image prompt engineering as interactive image retrieval - on an "infinite index". Thereby, a prompt corresponds to a query and prompt engineering to query refinement. Selected image-prompt pairs allow direct relevance feedback, as the model can modify an image for the refined prompt. This is a form of one-sided interactive retrieval, where the initiative is on the user side, whereas the server side remains stateless. In light of an extensive literature review, we develop these parallels in detail and apply the findings to a case study of a creative search task on such a model. We note that the uncertainty in searching an infinite index is virtually never-ending. We also discuss future research opportunities related to retrieval models specialized for generative models and interactive generative image retrieval. The application of IR technology, such as query reformulation and relevance feedback, will contribute to improved workflows when using generative models, while the notion of an infinite index raises new challenges in IR research.
translated by 谷歌翻译
In this paper, we introduce MINTIME, a video deepfake detection approach that captures spatial and temporal anomalies and handles instances of multiple people in the same video and variations in face sizes. Previous approaches disregard such information either by using simple a-posteriori aggregation schemes, i.e., average or max operation, or using only one identity for the inference, i.e., the largest one. On the contrary, the proposed approach builds on a Spatio-Temporal TimeSformer combined with a Convolutional Neural Network backbone to capture spatio-temporal anomalies from the face sequences of multiple identities depicted in a video. This is achieved through an Identity-aware Attention mechanism that attends to each face sequence independently based on a masking operation and facilitates video-level aggregation. In addition, two novel embeddings are employed: (i) the Temporal Coherent Positional Embedding that encodes each face sequence's temporal information and (ii) the Size Embedding that encodes the size of the faces as a ratio to the video frame size. These extensions allow our system to adapt particularly well in the wild by learning how to aggregate information of multiple identities, which is usually disregarded by other methods in the literature. It achieves state-of-the-art results on the ForgeryNet dataset with an improvement of up to 14% AUC in videos containing multiple people and demonstrates ample generalization capabilities in cross-forgery and cross-dataset settings. The code is publicly available at https://github.com/davide-coccomini/MINTIME-Multi-Identity-size-iNvariant-TIMEsformer-for-Video-Deepfake-Detection.
translated by 谷歌翻译
The connectivity-aware path design is crucial in the effective deployment of autonomous Unmanned Aerial Vehicles (UAVs). Recently, Reinforcement Learning (RL) algorithms have become the popular approach to solving this type of complex problem, but RL algorithms suffer slow convergence. In this paper, we propose a Transfer Learning (TL) approach, where we use a teacher policy previously trained in an old domain to boost the path learning of the agent in the new domain. As the exploration processes and the training continue, the agent refines the path design in the new domain based on the subsequent interactions with the environment. We evaluate our approach considering an old domain at sub-6 GHz and a new domain at millimeter Wave (mmWave). The teacher path policy, previously trained at sub-6 GHz path, is the solution to a connectivity-aware path problem that we formulate as a constrained Markov Decision Process (CMDP). We employ a Lyapunov-based model-free Deep Q-Network (DQN) to solve the path design at sub-6 GHz that guarantees connectivity constraint satisfaction. We empirically demonstrate the effectiveness of our approach for different urban environment scenarios. The results demonstrate that our proposed approach is capable of reducing the training time considerably at mmWave.
translated by 谷歌翻译
In this paper, we elaborate on the design and discuss the results of a multi-agent simulation that we have developed using the PSI cognitive architecture. We demonstrate that imbuing agents with intrinsic needs for group affiliation, certainty and competence will lead to the emergence of social behavior among agents. This behavior expresses itself in altruism toward in-group agents and adversarial tendencies toward out-group agents. Our simulation also shows how parameterization can have dramatic effects on agent behavior. Introducing an out-group bias, for example, not only made agents behave aggressively toward members of the other group, but it also increased in-group cohesion. Similarly, environmental and situational factors facilitated the emergence of outliers: agents from adversarial groups becoming close friends. Overall, this simulation showcases the power of psychological frameworks, in general, and the PSI paradigm, in particular, to bring about human-like behavioral patterns in an emergent fashion.
translated by 谷歌翻译
Reinforcement learning in partially observable domains is challenging due to the lack of observable state information. Thankfully, learning offline in a simulator with such state information is often possible. In particular, we propose a method for partially observable reinforcement learning that uses a fully observable policy (which we call a state expert) during offline training to improve online performance. Based on Soft Actor-Critic (SAC), our agent balances performing actions similar to the state expert and getting high returns under partial observability. Our approach can leverage the fully-observable policy for exploration and parts of the domain that are fully observable while still being able to learn under partial observability. On six robotics domains, our method outperforms pure imitation, pure reinforcement learning, the sequential or parallel combination of both types, and a recent state-of-the-art method in the same setting. A successful policy transfer to a physical robot in a manipulation task from pixels shows our approach's practicality in learning interesting policies under partial observability.
translated by 谷歌翻译
The detection of state-sponsored trolls acting in information operations is an unsolved and critical challenge for the research community, with repercussions that go beyond the online realm. In this paper, we propose a novel AI-based solution for the detection of state-sponsored troll accounts, which consists of two steps. The first step aims at classifying trajectories of accounts' online activities as belonging to either a state-sponsored troll or to an organic user account. In the second step, we exploit the classified trajectories to compute a metric, namely "troll score", which allows us to quantify the extent to which an account behaves like a state-sponsored troll. As a study case, we consider the troll accounts involved in the Russian interference campaign during the 2016 US Presidential election, identified as Russian trolls by the US Congress. Experimental results show that our approach identifies accounts' trajectories with an AUC close to 99\% and, accordingly, classify Russian trolls and organic users with an AUC of 97\%. Finally, we evaluate whether the proposed solution can be generalized to different contexts (e.g., discussions about Covid-19) and generic misbehaving users, showing promising results that will be further expanded in our future endeavors.
translated by 谷歌翻译
该技术报告描述了在Robocup SPL(Mario)中计算视觉统计的模块化且可扩展的体系结构,该结构在Robocup 2022的SPL Open Research Challenge期间提出,该挑战在曼谷(泰国)举行。马里奥(Mario)是一个开源的,可用的软件应用程序,其最终目标是为Robocup SPL社区的发展做出贡献。Mario带有一个GUI,该GUI集成了多个机器学习和基于计算机视觉的功能,包括自动摄像机校准,背景减法,同型计算,玩家 +球跟踪和本地化,NAO机器人姿势估计和跌落检测。马里奥(Mario)被排名第一。1在开放研究挑战中。
translated by 谷歌翻译
在现实设置中跨多个代理的决策同步是有问题的,因为它要求代理等待其他代理人终止和交流有关终止的终止。理想情况下,代理应该学习和执行异步。这样的异步方法还允许暂时扩展的动作,这些操作可能会根据执行的情况和操作花费不同的时间。不幸的是,当前的策略梯度方法不适用于异步设置,因为他们认为代理在每个时间步骤中都同步推理了动作选择。为了允许异步学习和决策,我们制定了一组异步的多代理参与者 - 批判性方法,这些方法使代理可以在三个标准培训范式中直接优化异步策略:分散的学习,集中学习,集中学习和集中培训以进行分解执行。各种现实域中的经验结果(在模拟和硬件中)证明了我们在大型多代理问题中的优势,并验证了我们算法在学习高质量和异步解决方案方面的有效性。
translated by 谷歌翻译
这项研究提出了用于完善神经网络参数或进入连续时间动态系统的控制功能的增量校正方法,以提高解决方案精度,以满足对性能输出变量放置的临时点约束。所提出的方法是将其参数基线围绕基线值的动力学线性化,然后求解将扰动轨迹传输到特定时间点(即临时点)处所需的纠正输入。根据要调整的决策变量的类型,参数校正和控制功能校正方法将开发出来。这些增量校正方法可以用作补偿实时应用中预训练的神经网络的预测错误的手段,在实时应用中,必须在规定的时间点上高精度预测动态系统的准确性。在这方面,在线更新方法可用于增强有限摩托控制的整体靶向准确性,但使用神经政策受到点约束。数值示例证明了拟议方法在火星上的动力下降问题中的应用中的有效性。
translated by 谷歌翻译